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ABSTRACT

The problem of source localization has become increasingly important in recent

years. In source localization, we are interested in estimating the location of a source

using various relative position information. This research considers source localiza-

tion using relative position information provided by Received Signal Strength (RSS)

values under the assumption of log-normal shadowing. We investigate an important

aspect of source localization, namely, that of optimally placing sensors.

Two specific issues are investigated. The first is one of source monitoring. In

this, one must place sensors around a localized source in an optimum fashion subject

to the constraint that sensors are at least a certain distance from the source. The

second is sensor placement for source localization. In this problem, we assume that

the source is uniformly distributed in a circular region. The sensors must be placed

in the complement of a larger concentric circle, to optimally localize the source.

The monitoring problem is considered in N-dimensions. The localization prob-

lem is in 2-dimensions. The technical problem becomes one of investigating the un-

derlying Fisher Information Matrix (FIM) for optimal monitoring and its expectation

for optimal localization. The underlying problem then becomes one of placing sensors

to maximize the determinant or the minimum eigenvalue of FIM (or its expectation)

or minimize the trace of the inverse of the FIM (or its expectation).



www.manaraa.com

2

Abstract Approved:

Thesis Supervisor

Title and Department

Date



www.manaraa.com

OPTIMUM SENSOR PLACEMENT FOR SOURCE LOCALIZATION AND

MONITORING FROM RECEIVED SIGNAL STRENGTH

by

Stella-Rita Chioma Ibeawuchi

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Electrical and Computer Engineering
in the Graduate College of
The University of Iowa

December 2010

Thesis Supervisor: Professor Soura Dasgupta



www.manaraa.com

Copyright by
STELLA-RITA CHIOMA IBEAWUCHI

2010
All Rights Reserved



www.manaraa.com

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Stella-Rita Chioma Ibeawuchi

has been approved by the Examining Committee for the
thesis requirement for the Doctor of Philosophy degree
in Electrical and Computer Engineering at the December
2010 graduation.

Thesis Committee:

Soura Dasgupta, Thesis Supervisor

ErWei Bai

Mark Andersland

Edwin Dove

Raghuraman Mudumbai



www.manaraa.com

TO GOD BE THE GLORY!

ii



www.manaraa.com

ACKNOWLEDGMENTS

I would like to express the deepest appreciation to my thesis advisor, Professor

Soura Dasgupta, who has the attitude and the substance of a genius. Without his

guidance and persistent help this dissertation would not have been possible.

I would also like to thank my committee members, Professor ErWei Bai, Pro-

fessor Mark Andersland, Professor Zhiqiang Liu, Professor Edwin Dove and Profes-

sor Raghuraman Mudumbai, for their insightful ideas and sugestions that immensly

helped me in accomplishing this work. In recognition of all your help and support,

I would like to mention the faculty and staff of the Department of Electrical and

Computer Engineering in particular Professor Karl Lonngren and Cathy Kern.

The writing of this desertation has been one of most significant academic chal-

lenges I have ever had to face. Without the support and prayers of my parents,

brothers and sister, relatives, and friends, this study would not have been completed.

It is to them I owe my deepest gratitude.

To my co-workers at the Hospital Stores, University of Iowa Hospitals and

Clinics, especially Thomas Furlong, Gary Hagen, Brian Morrison, Tom Seydel and

Garth Livingston, for your goodness and for giving me such a pleasant work expe-

rience and having confidence in me as well as supporting my research and academic

activities at the College of Engineering.

Last but certainly not least, Thanks be to God! You have made my life more

bountiful. May Your Name be Exalted, Honored, and Glorified. AMEN.

iii



www.manaraa.com

ABSTRACT

The problem of source localization has become increasingly important in recent

years. In source localization, we are interested in estimating the location of a source

using various relative position information. This research considers source localiza-

tion using relative position information provided by Received Signal Strength (RSS)

values under the assumption of log-normal shadowing. We investigate an important

aspect of source localization, namely, that of optimally placing sensors.

Two specific issues are investigated. The first is one of source monitoring. In

this, one must place sensors around a localized source in an optimum fashion subject

to the constraint that sensors are at least a certain distance from the source. The

second is sensor placement for source localization. In this problem, we assume that

the source is uniformly distributed in a circular region. The sensors must be placed

in the complement of a larger concentric circle, to optimally localize the source.

The monitoring problem is considered in N-dimensions. The localization prob-

lem is in 2-dimensions. The technical problem becomes one of investigating the un-

derlying Fisher Information Matrix (FIM) for optimal monitoring and its expectation

for optimal localization. The underlying problem then becomes one of placing sensors

to maximize the determinant or the minimum eigenvalue of FIM (or its expectation)

or minimize the trace of the inverse of the FIM (or its expectation).
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CHAPTER 1

INTRODUCTION

Source localization is the estimation of the position of a source given the signals

received at a sensor array. Of interest is the placement of sensors in such a manner

as to accurately estimate the position of the source in an optimum manner.

There are situations in which the sensor locations with respect to the source

being observed are determined by constraints imposed by the task. For instance, the

sensors may be placed along the periphery of a geographical area or they may be

constrained to lie along a line segment. It may also be that the distances between the

sensors and the source have to be no less than a certain distance to prevent sensor

damage.

The Cramer-Rao Lower Bound (CRLB) is a lower bound on estimate variance

that provides a gauge of source position estimator accuracy. This research is focused

on the optimal placement of sensors for source localization and monitoring from Re-

cieved Signal Strength (RSS) under log-normal shadowing to obtain the best CRLB.

Terms such as RSS and log-normal shadowing will be explained in the sequel.

For the moment, we note that source monitoring is a problem related to source local-

ization. Localization involves estimating the position of a source. Monitoring involves

continuing to estimate the position of the source after the initial estimate has been

obtained, i.e, to monitor for instances of potential source movement.



www.manaraa.com

2

1.1 Literature Review

1.1.1 Source Localization

Source localization, in recent times, has assumed increasing interest, and has

become the subject of much research. To estimate the position of a source given sig-

nals received at an array of sensors is a challenging task that needs to be addressed.

Source localization can be defined as the use of a set of sensors to estimate the

precise location of a source based on distinct details or information that are related

to the sensors’ relative position to the source. The importance of source localization

cannot be overemphasized since it is required in several applications such as radar,

sonar, mobile wireless communications, radio astronomy, seismology, acoustics, geo-

physics, wireless sensor networks, to name just a few.

Given a wireless sensor network, position-awareness at the sensors are impor-

tant for the successful network. Another example of the use of source localization

is in cellular wireless communications networks where the base stations have to be

able to estimate the location of a mobile user transmitting within its geographical

coverage area.

The accuracy of source localization can be evaluated based on the closeness of

the estimated position of the source to its real position. This is usually expressed in

the Euclidean distance between the real and estimated distances.

Various algorithms have been proposed to estimate the location of a source.

Localization techniques depend on the information available at the sensor nodes. This

information could be power-level information, Time Difference of Arrival (TDOA),
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Time of Arrival (TOA), Angle of Arrival (AOA), Time of Flight (TOF), Bearing in-

formation, Received Signal Strength (RSS) and Range Measurement.

TOA, TDOA, and AOA usually provide the best results but they are often dif-

ficult to obtain since they require a good synchronization between timers (in TOA),

exchanges between sensors (in TDOA), or multiple antennas (in AOA). RSS at a

given sensor is always easily obtained, some knowledge of the decay rate of the RSS

(path loss exponent) is needed for efficient least square estimation when using RSS.

However, the most commonly used approaches are the Time Difference of Arrival

(TDOA) and distance measurements obtained using RSS.

Given a set of vectors x1, x2..., xn, usually 2-D or 3-D vectors with n ≥ 3 for

2-D and n ≥ 4 for 3-D, an unknown vector y∗ can be estimated from the measured

distance of a known vector y and the set of vectors x1, x2..., xn i.e. di = ‖xi − y‖

where y represents the position of the source, x1, x2..., xn represent the positions of

the n sensors. In order to estimate the location of a source using distance measure-

ments, at least 3 non-colinearly situated sensors are needed for 2-D source localization.

Similarly for 3-D source localization, at least 4 non-coplanar sensors are needed. The

RSS approach involves sending out signal with known strength and using the received

signal strength and path loss coefficient to estimate the distance between the source

and sensor.

The received signal strength is inversely proportional to the distance from the

source. Thus, signal strength depends on the medium of transmission and the signal
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intensity

s =
A

dβ
(1.1)

where s is the RSS, A is the source signal strength at a unit distance from the source,

d is the distance between the sensor and the source and β the path loss coefficient.

Suppose y is uniquely specified by d, then y∗ can be estimated by the use of linear

algorithms, but this approach is not recommended because with noisy measurements

of distances, the linear algorithm can provide highly inaccurate estimates even when

the noise is small. Several research papers adopt non-linear approaches, involving

working with the RSS at the various sensors and then choose y that minimizes the

cost function

J (y) =
N
∑

i=1

[

si −
A

‖xi − y‖β

]2

(1.2)

where xi is the location of the ith sensor and si is the RSS at the ith sensor [21].

One disadvantage of using RSS as a ranging measurement is that the path

loss coefficient is dependent on the transmitting environment. Another problem with

this approach is that the greater the source-sensor (transmitter-receiver) distance, the

weaker the RSS and also multipath fading can lead to propagation models where the

fading becomes sensitive to changes in the distance between source and sensor. To

account for the uncertainty in β, one employs the log-normal shadowing paradigm.
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Specifically (1.1) is replaced by

log si = log A− β log ‖xi − y‖+ wi (1.3)

where w is the zero mean Gaussian with variance σ2. Effectively σ reflects the uncer-

tainty in estimating β.

TDOA-based techniques are more commonly used in passive source localiza-

tion because they do not require a time stamp when the signal is transmitted, and

can achieve relatively good location accuracy. Source localization techniques that use

TDOA play important roles in many applications like navigation, localization and

tracking of acoustic sources, and location services in mobile communication. The

estimation of a source location using TDOA is not an easy task because it involves

the use of a set of non-linear equations that is related to the source location and the

TDOA measurements. The TDOA technique requires the knowledge of the precise

positions of the sensors. A signal is generally subjected to attenuation or path-loss

as it propagates over a medium, and then received at a number of different separated

sensors. The time-delay depends on the distance between the source and its sensors.

Both the time delay and the signal strength information are available when the source

signal is captured at the sensors.

Source localization involving TDOA/RSS measurements require a very precise

knowledge of the sensors’ location since small errors in the sensor location can lead

to significant decrease in the accuracy of the source location. A robust algorithm is
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needed to improve the source localization performance.

[19] suggested the use of TDOA to find an accurate location of a source with

the use of information about the signals received at the sensor when the sensors have

random errors in their positions. They made use of a weighted matrix that consisted

of the sensor position errors to improve the estimation of the source localization. This

method uses the Weighted Least Square Minimization that does not have the common

convergence and initialization problems.

[26] also focused on using TDOA to estimate source localization in the presence

of sensor position errors. Their proposed solution was based on the weighted least

square minimization. They estimated the source location with the assumption that

the sensor positions are without errors and they used the estimated source location

to reduce sensor position noise through estimation process. The source position is

estimated again using the improved sensor position. The hope is that the source lo-

cation estimate improves with each said iteration. Although this process is iterative,

its convergence is insensitive to the noise powers in the sensor.

1.1.2 Applications of Source Localization

One of the main applications of source localization is the surveillance and

protection of military, industrial areas and densely populated areas. Source local-

ization techniques can be applied in signal processing for wireless communications

[38], [40] such as array signal processing and source/sensor localization. Source lo-

calization applications can also be found in sonar, radar [6], [46] microphone arrays
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[32], wireless sensor networks [7], RFID location systems [31], etc. Researches in

the RFID-Assisted Localization and Communication for First Responders project de-

termines the likelihood of using RFID-assisted localization in combination with an

ad-hoc wireless communication network to provide reliable tracking of first respon-

ders in stressed indoor RF environments, where GPS-based localization and links to

external communication systems are known not to be reliable.

Acoustic sound localization is the estimation of an acoustic source location

given measurements of the sound field at various locations [32]. Microphone arrays

are typically used to sample the sound field. The localization of various acoustic

sources has many possible application areas, for e.g. voice enhancement, intruder

detection, sniper localization, automatic tracking of speakers in an e-conferencing en-

vironment, just to mention a few.

Sound source localization applications can be found in radar and sonar lo-

calization systems. In sonar signal processing, the focus is on locating underwater

acoustic sources using an array of hydrophones. In video conference and multimedia

human computer interface applications, microphone arrays have been developed to

locate and track speakers head. Recently, microphone arrays have been used in the

enhancement of the SNR for speech signal, sound source localization, echo removal,

speech recognition and hearing aids.

Microphone arrays focus on different applications e.g. voice input in auto-

mobile, hearing aids, desktop PC, teleconferencing, etc, but different applications

require different standards such as cost, size, robustness both in the algorithm and
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the computational requirement, high accuracy, noise and echo cancellation in a room

environment [32]. Acoustic signatures are used to estimate vehicle locations in an

open-field sensor network [42].

Due to the emergence of small, low power devices that incorporate micro sens-

ing and actuation to wireless communication, there has been much research interest

in wireless distributed sensor networks. Sensor networks have various applications

including seismic remote sensing, environmental monitoring, underwater acoustics,

battlefield surveillance, electronic warfare, and geophysics [23].

These sensor networks are designed to perform functions such as localization,

classification, detection and tracking of one or more sources in the sensors field. The

sensors are battery powered and have a limited wireless communication bandwidth.

Hence, one requires signal processing algorithms that consume less energy and occupy

less bandwidth. Source localization, being a signal processing task, is usually carried

out by the sensors using a passive and stationary sensor network. The main objective

is to estimate the position of moving or stationary sources within the sensor field

being monitored by the sensor network [41].

1.2 Related Work

Reference [29] optimized the sensor placement for mobile sensor networks by

proposing a motion coordination algorithm that directs the mobile sensor network

to an optimum sensor placement. In their work, the assumption of Gaussian white

noise measurements with diagonal correlation is made and they presented closed-form
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expressions for the determinant of the Fisher Information Matrix(FIM) for range-

measurements models in non-random scenarios for 2-D and 3-D state spaces. Observe

that the diagonal elements of the inverse of the FIM provide the Cramer Rao Lower

Bound (CRLB) of the underlying estimation problem.

[24] offers a good overview of existing sensor placement procedures for active

Ultra Wideband Sensors. They optimized sensor placement by using range measure-

ments and incorporated PEB (positive error bounds), a lower bound on localization

accuracy, to measure the quality of their sensor placement configuration. PEB was

derived by [24] using the information inequality for an indoor localization system us-

ing Ultra-Wideband (UWB) ranging sensor. They similarly developed RELOCATE,

an iterative algorithm, that provided sensor placements so as to minimize PEB at

that point. The RELOCATE algorithm is a coordinate descent algorithm that mini-

mizes the PEB one coordinate at a time until convergence occurs. They showed that

RELOCATE was optimal and efficient when the range measurements were unbiased

and had constant variances. They also showed that careful planning of the sensor

placement lead to the use of fewer sensors to achieve the same accuracy than dis-

tributing sensors evenly on the area boundary. [24] stated in their work that PEB

was not only a theoretical lower bound, but it could also be closely approximated by

a maximum likelihood estimator.

[33] proposed a procedure for placing acoustic sensors in 3D space using pas-

sive source localization. The average CRB for a surveillance area was minimized

with respect to the sensors positions. CRLB in the case of passive source localization
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depends on the source/sensor positions as well as on the propagation speed and the

assumptions made about the disturbance noise. The form of information used in their

research was TDOA and they assumed a zero mean Gaussian noise with constant vari-

ance. Simulations showed that while performance of estimation was increased, there

was no increment in the number of microphones used, infact, the number could be

reduced.

[48] derived properties of the Cramer-Rao bound and designed optimum sensor

arrays that minimize CRB for 2D and 3D localization from information gotten from

TDOA with the assumption of white measurement noise with uniform covariance.

Since the CRB is a square matrix, they considered the minimization of the trace of

the CRB.

1.3 The Broad Problem

As noted earlier, our goal is to study optimum sensor placement for source

monitoring and localization. The setting we adopt is as follows; we consider a source

located at y, and sensors at x1, x2..., xn, where xi, y are in R2 or R3. The signal model

is

log si = log A− β log ‖xi − y‖+ wi (1.4)

where A and β are known, si is the RSS at the ith sensor, and wi are mutually

uncorrelated zero mean Gaussian noise.

In the source monitoring problem, it is assumed that y is known, and the
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objective is to select the xi to optimize the underlying FIM in the sense to be described

below. In source localization, we assumed a distribution on y, and place xi to optimize

the expected value of the FIM.

To be specific, recall that CRLB matrix is the inverse of the FIM. Thus,

optimization involves maximizing certain attributes of the FIM. Three such attributes

are considered, these are

(i)Maximization of determinant of the FIM

(ii)Maximization of the smallest eigenvalue of the FIM

(iii)Minimization of the trace of the inverse of the FIM.

It is noteworthy that the last criteria represent minimization of the total mean square

localization error. In the localization problem, the FIM in (i-iii) is replaced by the

expectation of the FIM.

1.4 Outline

Chapter 2 derives the FIM, states the precise optimization problem for source

monitoring and shows that the optimum is achieved if and only if the FIM is a scaled

identity matrix.

Chapter 3 discusses how the xi ∈ RN , N=2, 3 can be chosen to achieve this

optimality condition. Chapter 4 describes how the necessary and sufficient condition

for the optimum solution can be met for n > 2 and extends these results to arbitrary

N ≥ 2.

In chapter 5, we will formulate the optimal source localization problem and provide
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a necessary and sufficient condition for the optimum solution, for N=2.
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CHAPTER 2

SOURCE MONITORING

In this chapter, we formulate the optimal source monitoring problem and pro-

vide a necessary and sufficient condition for the optimum solution. Section 2.1 pro-

vides the signal model, i.e., RSS under lognormal shadowing and derives the underly-

ing FIM. Section 2.2 makes precise the optimum source monitoring problem. Section

2.3 provides a necessary and sufficient condition on the FIM for optimality to be

achieved.

2.1 The Fisher Information Matrix

For the sake of generality, the results of this chapter are in the general N-

dimensional space, though the immediate utility is for N = 2 and 3. The signal

model involves y and x1, x2..., xn, each in RN , where y is the source location and xi

the location of the ith sensor.

The underlying observations are si, the RSS at the ith sensor.

log si = log A− β log ‖xi − y‖+ wi (2.1)

We assume that with wi ≈ N (0, σ2) mutually uncorrelated, where A and β are known.

The underlying estimation problem is that of estimating y from si, A, β, xi and σ2.

We now derive the FIM for this problem,
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call L = [log s1, .....log si]
T ,

observe that the conditional probability density function (pdf) under (2.1) is

ps|y(s|y) =
1

(2π)n/2σn
exp

{

−1

2

‖(L− Z)‖2
σ2

}

(2.2)

where Z = [log A− β log ‖x1 − y‖ , ....., log A− β log ‖xn − y‖]T .

Thus,

X =
∂

∂y
lnps|y(s|y)

= −
[

∂Z

∂y

](

L− Z

σ2

)

= − 1

σ2

(

∂ZT

∂y

)

W (2.3)

where W = [w1, ......wn].

Further, with zi = log A− β log ‖xi − y‖,

∂zi
∂y

= −β

2

∂

∂y
log ‖xi − y‖2

= − β

ln 10

xi − y

‖xi − y‖2
(2.4)
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Thus with

U =

[

xi − y

‖x1 − y‖2
, ......,

xi − y

‖xn − y‖2
]

in (2.3)

X =
β

σ2ln 10
UW (2.5)

By [43], the FIM is E
[

XXT
]

=
β2

σ2 (ln 10)2
UUT (2.6)

=
β2

σ2 (ln 10)2

n
∑

i=1

(xi − y) (xi − y)T

‖xi − y‖4
(2.7)

Observe that the optimization of the FIM is equivalent to the optimization of the

matrix F below,

F =
n
∑

i=1

(xi − y) (xi − y)T

‖xi − y‖4
(2.8)

2.2 The Optimum Source Monitoring Problem

We now formulate the precise source monitoring problem. As noted above, in the

sequel, we will work in general RN . When we say vectors in RN are noncoplanar, we

mean that for N = 2, they are non-collinear.
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In source monitoring, the underlying assumption is that y is known. Accord-

ingly, the problem we pose is given y, a scalar d and n, choose xi to optimize F , such

that, for all i,

‖xi − y‖ ≥ d (2.9)

The motivation of this constraint is as follows, should the source represent a threat,

then, it maybe desirable for the sensors to maintain a minimal distance from it.

Now, the diagonal elements of the inverse of the FIM provide the Cramer-Rao

Lower Bound (CRLB) for the underlying estimation problem. Thus as is typical in

detection theory, optimality consitutes either the maximization of the minimum eigen-

value or the determinant of the FIM, or for reasons laid out below, the minimization

of the trace of F−1. Accordingly we pose the three problems below.

Problem 1: For a given integer n ≥ N+1, scalar positive d and y ∈ RN , find distinct,

non-coplanar xi ∈ RN , i ∈ {1, · · ·n}, such that λmin(F ) is maximized subject to (2.9).

Problem 2: For a given integer n ≥ N + 1, scalar positive d and y ∈ RN , find

distinct, non-coplanar xi ∈ RN , i ∈ {1, · · ·n}, such that det(F ) is maximized subject

to (2.9).

Problem 3: For a given integer n ≥ N + 1, scalar positive d and y ∈ RN , find

distinct, non-coplanar xi ∈ RN , i ∈ {1, · · ·n}, such that trace(F−1) is minimized

subject to (2.9).

First note that noncoplanarity is necessary for localization to be possible. It
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is in principle possible for the FIM to be nonsingular even if the xi are coplanar.

Observe, the minimization of trace(F−1) is equivalent to the minimization of the

total mean-square error. Note while problems 1 and 2 were addressed in [11] in 2-

dimensions, problem 3 was not addressed at all.

A subtle point concerning this optimization is as follows. Observe that in (2.1) the

data has an affine dependence on the Gaussian random variables wi, but a nonaffine

dependence on y, the vector to be estimated. Thus, [20], no efficient estimate of y

exists from si, β, A and σ.

What then is the virtue of considering Problems 1 to 3? Recall the underlying

setting is the monitoring of y from the xi. This will require the xi to repeatedly acquire

the RSS values. Assume that the noise wi from one sample to the next are iid. Then

the Maximum Likelihood estimate under mild regularity conditions is asymptotically

efficient. One can show that in the present setting these regularity conditions are

indeed met. Thus assuming Maximum Likelihood estimation using data accumulated

over time, minimizing the CRLB is very useful.

2.3 A Necessary and Sufficient Condition

First observe from [11] that the inequality constraint in (2.9) is easily replacable

by an equality constraint. This is seen by the repeated application of the Lemma

below that was partially proved in [11]. This Lemma shows that by scaling down

xi − y, one increases (or certainly does not decrease) both the minimum eigenvalue

and the determinant, and decreases (or does not increase) the trace of the inverse.
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Lemma 2.1. Consider F in (2.8) under (2.9), xi, y ∈ RN , n > N , and

G =
vv′

‖v‖4 +
n
∑

i=2

(xi − y) (xi − y)′

‖xi − y‖4 , (2.10)

where for some scalar α

v = α(x1 − y),

and

‖v‖ = d.

Then

λmin(F ) ≤ λmin(G), (2.11)

det(F ) ≤ det(G), (2.12)

and

trace(F−1) ≥ trace(G−1). (2.13)
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Proof. It is readily seen that for some q ∈ R2

G = F + qq′.

Thus (2.11) clearly holds. Now suppose det(F ) = 0. Then as v is a scaled version of

x1 − y, det(G) = 0 as well. Thus consider nonsingular F , i.e F is positive definite,

and det(F ) > 0. Then

det(G) = det(F )
(

1 + q′F−1q
)

≤ det(F ).

where the last inequality follows from the fact that as F is positive definite so is F−1.

Implicit in (2.13) is the assumption that F is positive definite, and det(F ) > 0. Then

G−1 = F−1 − F−1qq′F−1

1 + q′F−1q
. (2.14)

As F and hence F−1 is positive definite it follows that F−1 ≥ G−1. Hence (2.13)

follows.

With

zi =
xi − y

d
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define

Z =
n
∑

i=1

ziz
′
i. (2.15)

Then without loss of generality to consider problems 1 to 3 are equivalent to the three

problems below, with N = 3.

Problem 1A: For a given integer n ≥ N + 1, find distinct, unit norm zi ∈ RN , i ∈

{1, · · ·n}, such that λmin(Z) is maximized and the zi do not lie on an N -dimensional

hyperplane.

Problem 2A: For a given integer n ≥ N + 1, find distinct, unit norm zi ∈ RN ,

i ∈ {1, · · ·n}, such that det(Z) is maximized and the zi do not lie on anN -dimensional

hyperplane.

Problem 3A: For a given integer n ≥ N + 1, find distinct, unit norm zi ∈ RN ,

i ∈ {1, · · ·n}, such that trace(Z−1) is minimized and the zi do not lie on an N -

dimensional hyperplane.

Observe that when the zi have unit norm then

trace(Z) = n. (2.16)

We next present a necessary and sufficient condition for the solutions of all three

problems without the non-coplanarity requirement.

Theorem 2.2. Consider for an integer n ≥ N + 1 any N × N symmetric positive
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definite matrix B, with

trace(B) = n. (2.17)

Then

λmin(B) ≤ n

N
, (2.18)

det(B) ≤
( n

N

)N

, (2.19)

and

trace(B−1) ≥ N2

n
. (2.20)

Further equality holds in these inequalities iff

B =
n

N
I. (2.21)

Proof. Call λi(B) the eigenvalues of B. Then we will first show that (2.18-2.20) hold,

and that the equality in these hold iff for all i, j ∈ {1, · · · , n},

λi(B) = λj(B) =
n

N
. (2.22)
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To this end observe that as B is symmetric positive definite and (2.17) holds, the

first set of equalities in (2.22) implies the last. Note (2.18) follows from the fact that

the minimum eigenvalue of a N ×N symmetric positive definite matrix is no greater

than 1/N -th of its trace, and that it achieves this bound iff (2.22) holds

. Further from Hadamaard’s inequality [28], and the fact that the arithmetic mean is

greater than or equal to the geomeric mean with equality iff all numbers whose mean

they are are the same, one obtains

[det(B)]1/N =

[

N
∏

i=1

λi(B)

]1/N

≤
∑N

i=1 λi(B)

N

=
n

N
.

Again equality holds iff (2.22) holds. Similarly,

trace(B−1)

N
=

1

N

N
∑

i=1

1

λi(B)

≥
[

N
∏

i=1

1

λi(B)

]1/N

,

with equality holding iff (2.22) holds. Further under (2.22), (2.20) must hold.

Now we prove that only symmetric positive definite matrix B for which (2.22) holds,

is as in (2.21). To this end we observe that under (2.22)

λmin(B) =
n

N
. (2.23)
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Consequently:

A = B − n

N
I ≥ 0. (2.24)

Because of (2.17) either all diagonal elements of B are n/N or at least one is less than

n/N . In the latter case A has a negative diagonal element and (2.24) cannot hold.

In the former case all diagonal elements of A are zero. Consequently (2.24) holds iff

A = 0. This completes the proof.

Thus the solution to both problems is characterized by unit norm zi that result

in

Z =
n

N
I. (2.25)

2.4 Conclusion

In this chapter, we have given a precise formulation of the optimum source monitoring

problem and have shown that with

zi =
xi − y

d
(2.26)

optimum xi must be such that ‖zi‖ = 1 and
∑n

i=1 ziz
T
i is a scaled identity matrix. In

the next chapter, we will show how to choose unit zi to satisfy this condition for N=2

and 3.
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CHAPTER 3

SOLUTION TO THE SOURCE MONITORING PROBLEM IN 2 AND

3-DIMENSIONS

In chapter 2, we provided a necessary and sufficient condition for optimality

of the source monitoring problem.

Specifically, with

zi =
xi − y

d
(3.1)

we require that ‖zi‖ = 1, zi be non collinear in 2D and non-coplanar in 3D and with

N=2 and 3 respectively, n ≥ N + 1 there holds

Z =
n
∑

i=1

ziz
T
i =

N

n
I (3.2)

In sections (3.1) and (3.2), we explain how this condition can be met in 2 and 3-

dimensions respectively. Section (3.3) provides simulations for 2D.

3.1 Choosing zi in 2D

We must find for n > 2, a 2-dimensional unit zi for which

Z =
n

2
I. (3.3)
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We first note certain simple structural issues associated with (2.15). In particular

note that for any orthogonal matrix Q, (2.15) is unaltered if zi are replaced ±Qzi.

In the sequel, when we refer to uniqueness of the zi for achieving (3.3), we will imply

uniqueness to within these equivalences.

There is also no loss of generality in assuming that z1 = [1, 0]′ = e1. We next describe

one class of potential solutions for achieving (3.3). Namely with Q an orthogonal

matrix, select for i ∈ {1, · · · , n}

zi = Qi−1e1. (3.4)

Then (3.3) is equivalent to:

n
∑

i=1

Qi−1e1e
′
1Q

′i−1 =
n

2
I. (3.5)

Since Q is an orthogonal matrix, this in turn is equivalent to

n+1
∑

i=2

Qi−1e1e
′
1Q

′i−1 =
n

2
I. (3.6)

Subtracting (3.5) from (3.6), we obtain that for (3.5) to be true, there must hold:

Qne1 = ±e1. (3.7)
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Now note that an arbitrary 2 × 2 orthogonal matrix is completely characterized by

the Givens rotation [17]:

Q =









cos θ − sin θ

sin θ cos θ









.

Most specifically, with such a Q, Qx is x rotated counter clockwise by θ. Further

Qi =









cos iθ − sin iθ

sin iθ cos iθ









.

Thus (3.7) becomes:

cosnθ = ±1

and

sinnθ = 0.

To within the equivalences noted earlier one thus obtains:

zi =









cos(π(i− 1)/n)

sin(π(i− 1)/n)









.
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Indeed in this case the (1,1) element of Z is

Z(1, 1) = 1 +

n
∑

i=2

cos2(π(i− 1)/n)

=
n−1
∑

i=0

cos2(πi/n)

=
n

2
+ Re

[

n−1
∑

i=0

exp(j2πi/n)

]

=
n

2
.

Likewise

Z(1, 2) = Z(2, 1)

=

n−1
∑

i=2

cos(π(i− 1)/n) sin(π(i− 1)/n)

=
n−1
∑

i=0

cos(πi/n) sin(πi/n)

= Im

[

n−1
∑

i=0

exp(j2πi/n)

]

= 0.

Finally,

Z(2, 2) =
n
∑

i=2

cos2(π(i− 1)/n)

=

n−1
∑

i=0

sin2(πi/n)

=
n

2
− Re

[

n−1
∑

i=0

exp(j2πi/n)

]

=
n

2
.
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Thus a set of n vectors each rotated from their neighbor by π/n, and their equivalences

suffice to achieve (3.3). It should be stressed that this choice of zi is by no means

unique for n > 3. We now argue that it is unique for n = 3, within of course the

equivalences noted above. Indeed for n = 3, to within equivalences we must choose

z1 = [1, 0]′ and zi = [cos θi, sin θi]
′, for i ∈ {1, 2}. Then (3.3) becomes:

1 + cos2 θ1 + cos2 θ2 = 3/2 (3.8)

sin2 θ1 + sin2 θ2 = 3/2 (3.9)

cos θ1 sin θ1 + cos θ2 sin θ2 = 0. (3.10)

Both (3.8) and (3.9) reduce to

cos(2θ1) + cos(2θ2) = −1. (3.11)

Further (3.10) becomes:

sin(2θ1) + sin(2θ2) = 0. (3.12)
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Defining xi = cos(2θi) this pair of equations reduce to:

x1 + x2 = −1. (3.13)

and one of

√

1− x2
1 +

√

1− x2
2 = 0, (3.14)

and

√

1− x2
1 −

√

1− x2
2 = 0. (3.15)

In either case one has,

x2
1 = x2

2. (3.16)

Since x1 = −x2 will not satisfy (3.13), we have that to within equivalences

cos(2θ1) = cos(2θ2) = −1/2,

provides a unique solution to within the stated equivalences, e.g.

θ1 = π/3
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and

θ2 = 2π/3.

Observe that zi are noncollinear. We conclude this section with an observation relating

our solutions to spherical codes. Observe to within an equivalence in the n=3 case,

one choice of the zi are depicted in fig 3.1. One way of describing this is that these z1,

Figure 3.1: Depiction of relation to spherical codes

z2 and z3 are a collection of three vectors on the unit circle such that the minimum

distance between them is maximized.

All the solutions given in this section, to within an equivalence, have these

properties. These are infact characteristics of spherical codes.
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3.2 Solution for Source Monitoring in 3D

In this case, we require that

Z =
n

N
I. (3.17)

In this section we describe how (3.17) can be met with noncoplanar zi, for n > N = 3.

We first note certain simple structural issues associated with (2.15). In particular note

that for any orthogonal matrix Qn, (2.15) is unaltered if zi are replaced ±Qnzi.

There is also no loss of generality in assuming that z1 = 1√
3
[1, 1, 1]′ = e1. We next

describe one class of potential solutions for achieving (3.17). Namely for a given n,

with Qn ∈ R3×3 an orthogonal matrix, select for i ∈ {1, · · · , n}

zi = Qi−1
n e1. (3.18)

Then, with N = 3, (3.17) is equivalent to:

n−1
∑

i=0

Qi
ne1e

′
1Q

′i
n =

n

3
I. (3.19)

We further note that an orthogonal Qn that satisfies (3.19), can be used to determine,

an orthogonal Pn that satisfies:

n−1
∑

i=0

P i
nηη

′P ′i
n =

n

3
I, (3.20)
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for any other given unit η ∈ R3. Indeed for such a unit η there exists an orthogonal

matrix P , such that

η = Pe1.

Then:

n

3
I =

n−1
∑

i=0

Qi
ne1e

′
1Q

′i
n

= P

[

n−1
∑

i=0

Qi
nP

′Pe1e
′
1P

′PQ′i
n

]

P ′

=
n−1
∑

i=0

(PQnP
′)
i
ηη′ (PQnP

′)
′i
.

Thus Pn = PQnP
′, satisfies (3.20). There are some notable differences between the

two and three dimensional cases. First in two dimensions one can choose Qn to be a

rotation matrix, i.e. one that is orthogonal and has determinant 1. The sequel will

demonstrate that such a Qn in three dimensions will result in zi that are coplanar.

Second, in two dimensions it is impossible to satisfy (3.19) that involve zi that are

in collinear. By contrast in three dimensions it is possible to identify a class of real

orthogonal Qn satisfying (3.19) that involve zi that are coplanar. Indeed choose:

Q4 =

















0 1 0

−1 0 0

0 0 1

















(3.21)
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and verify that (3.19) holds. Yet the third element of each zi is 1, and thus the zi are

coplanar.

We now provide a necessary condition on Qn to ensure non-coplanarity.

Lemma 3.1. Consider for n > 3, any orthogonal Qn ∈ R3×3, and a unit v ∈ R3.

Suppose:

n−1
∑

i=0

Qi
nvv

′Q′i
n =

n

3
I, (3.22)

and {v,Qnv,Q
2
nv, · · · , Qn−1

n v} are non-coplanar. Then the eigenvalues of Qn are, for

some θ ∈ {(0, 2π)− {π}},
{

−1, ejθ, e−jθ
}

.

Proof. We first assert that Qn cannot have an eigenvalue at 1. To establish a contra-

diction suppose the contrary is true. Then for some p ∈ R3,

p′Qn = p′.

Thus, for all i ∈ {0, 1, · · · , n− 1},

p′Qi
nv = p′v = constant .

Consequently {v,Qnv,Q
2
nv, · · · , Qn−1

n v} are coplanar. Thus as all eigenvalues of Qn

are on the unit circle, Qn ∈ R3×3, and its complex eigenvalues must be in conjugate

pairs, either exactly one eigenvalue of Qn is -1, or all three are -1. In the latter case
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as Qn is orthogonal, Qn = −I, and one would obtain,

n−1
∑

i=0

Qi
nvv

′Q′i
n = nvv′,

violating (3.22). Thus exactly one eigenvalue of Qn is -1 and the other two on the

unit circle are complex and form a conjugate pair. This completes the proof.

Observe that when Qn has eigenvalues
{

−1, ejθ, e−jθ
}

, its determinant is -1,

and it cannot be a rotation matrix. We now characterize one class of Qn that achieves

(3.19).

Theorem 3.2. Suppose z1 = [1, 1, 1]′/
√
3 and for n > 3 the unitary matrix Tn ∈ C3×3

obeys the following:

(a) Tn diag
{

ej(2π/n−π), e−j(2π/n−π),−1
}

TH
n ∈ R3×3.

(b) Each element of TH
n z1 has magnitude 1/

√
3.

Then Qn = Tn diag
{

ej(2π/n−π), e−j(2π/n−π),−1
}

TH
n is orthogonal and obeys (3.19).

Further {z1, Qnz1, Q
2
nz1, · · · , Qn−1

n z1} are noncoplanar.

Proof. That Qn as defined in the theorem statement is orthogonal is trivial. Call

θn = 2π/n− π. (3.23)

Suppose first that {z1, Qnz1, Q
2
nz1, · · · , Qn−1

n z1} are coplanar. Then for some ρ ∈ R3,
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ρ 6= 0 and all i, k ∈ {0, · · · , n− 1},

ρ′Qi
nz1 = ρ′Qk

nz1. (3.24)

Consequently with p = ρ′Tn = [p1, p2, p3]
′ 6= 0

wn = [w1n, w2n, w3n]
′ = THz1, (3.25)

for all i, k ∈ {0, · · · , n− 1} there holds,

p1w1ne
jiθn + p2w2ne

−jiθn + (−1)ip3w3n

= p1w1ne
jkθn + p2w2ne

−jkθn + (−1)kp3w3n. (3.26)

By hypothesis for all i ∈ {1, 2, 3}

|win| = 1/
√
3. (3.27)

By respectively comparing the {i, k} pairs, {0, 2} and {1, 3} (recall n > 3), we obtain









1 1

ejθn e−jθn

















(

ej2θn − 1
)

p1w1n

(

e−j2θn − 1
)

p2w2n









= 0.

As n > 3, under (3.23) and (3.27), the 2× 2 matrix in the left hand side of the above

equation is nonsingular, win 6= 0 and
(

ej2θn − 1
)

6= 0. Thus, p1 = p2 = 0. Thus
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from (3.26) by using i = 0 and k = 1, p3 = 0. This establishes a contradiction and

{z1, Qnz1, Q
2
nz1, · · · , Qn−1

n z1} are indeed noncoplanar.

To complete the proof we show that with wn as in (3.25) and (3.27), there holds:

n−1
∑

i=0

diag
{

ejiθn , e−jiθn , (−1)i
}

wnw
H
n

diag
{

e−jiθn , ejiθn , (−1)i
}

=
n

3
I. (3.28)

Then the result will follow because Tn is unitary. That the diagonal elements of the

matrix on the left hand side of (3.28) equal n/3 is a direct consequence of (3.27).

Since the (1,3) element is just the conjugate of the (2,3) element, it suffices to show

that the (1,3) and (1,2) elements are zero. Because of (3.23) the (1,2) element on the

left hand side of (3.28) equals:

w1nw
∗
2n

n−1
∑

i=0

e2jiθn = w1nw
∗
2n

1− e2jnθn

1− e2jθn

= 0.

Similary, the (1,3) element on the left hand side of (3.28) equals:

w1nw
∗
3n

n−1
∑

i=0

eji(θn−π) = w1nw
∗
3n

1− ejn(θn−π)

1− ej(θn−π)

= 0.

The proof is thus complete.
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Generating Tn that meets the requirements of the theorem is straight forward.

For example:

Tn =

















1√
2

1√
2

0

j√
2

−j√
2

0

0 0 1

















(3.29)

results in

Qn =

















cos(θn) sin(θn) 0

− sin(θn) cos(θn) 0

0 0 −1

















(3.30)

where θn is as in (3.23). The theorem of course provides a much wider class Qn.

Observe that unlike the 2D case, these solutions do not represent optimal 3D spherical

codes. However, in the n=4 case when (3.30) leads to z1, · · · z4 that are vertices of a

tetrahedron, the resulting code has been classified as a ”good spherical code”.

To understand (3.30) for n>4, suppose the first two dimensions represent the x

and y axes and third the z-axis. Then multiplication by Q as in (3.30) flips the sign of

the z-coordinate and rotates counterclockwise by θn parallel to the x− y plane.Thus,

as depicted in figure 3.2 for n = 6, the points characterized by z1, Qz1, · · ·Qn−1z1, lie

on the bases of two cones, one the inverted version of the other. The bases are parallel

to the x − y axes, and have their rims on the surface of the unit sphere. Each cone

has its apex at the origin and is parallel to the z-axis. The points alternate between
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the bases. Going from one point on the same base to its neighbor involves a rotation

by 2π/n parallel to the x-y plane. The first two points on each base are rotated by

π/n, parallel to the x-y plane.

Figure 3.2: Alternation of points between bases of rotated cones for n=6

3.3 Simulations for the 2D case

In the simulations below for the 2D case, A = 1000, β = 2, µ = 0.001,

y = [0.5; 0]. 1000 runs of σ are used to average the error with plots of mean square

error vs σ.

From the simulations of the 2D case, the optimized sensor positions have good per-

formance relative to the arbitrary sensor positions, which have much higher averaged

error, thus, the optimization of the sensor positions achieves the lowest possible mean

square error and hence, performs an optimal monitoring and localization of the source.
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Figure 3.3: Comparison between the Mean Square Error Vs Variance of arbitrary
sensor locations and the optimized sensor positions at θ = 0, π/3, 2π/3 with chosen
source location y at [0.5, 0]′. Diagram legend: Dashed line-arbitrary sensor position,
Straight line-optimized sensor positions.
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CHAPTER 4

OPTIMUM SOURCE MONITORING IN N-DIMENSIONS

4.1 Introduction

The previous chapters dealt the optimum source monitoring problem when

both the source location y and the sensor locations xi are either 2-dimensional or 3-

dimensional. In this chapter we consider the N -dimensional case where N > 3. The

solutions we provide here specialize to those provided earlier for the two and three

dimensional cases.

The motivation for considering the general N -dimesnsional case is as follows.

First it is a natural and potentially useful generalization of the lower dimensional

cases. Second, it has potential applications when y represents a vector of features

and the xi reference features. Finally, the solution to this problem in two dimensions

represents optimal spherical codes. In the three dimensions it is identical at least for

the case of four sensors to a code that has been recognized as a good spherical code.

Thus the general N -dimensional solution has the potential of also generating good

spherical codes.

In a sense the results here are stronger than in the previous chapters. Specifi-

cally, recall that one class of solutions presented in the earlier chapters involve the case

where with Q an orthogonal matrix, and d the minimum distance that the sensors
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are allowed to be from the source, for each i, and arbitrary x1, obeying ‖xi − y‖ = d,

xi − y

d
= Qi−1x1 − y

d
.

The previous chapters provide sufficient conditions on how Q can be selected. In this

chapter we provide a necessary and sufficient condition on Q. Section 4.2 recounts

the transformed problem we must solve. Section 4.3 provides a necessary conditions

on Q. Sections 4.4 and 4.5 respectively provide the necessary and sufficient condition

on Q for even and odd N .

4.2 Preliminaries

In this chapter we assume that there are n > N , distinct, xi ∈ R
N , and

y ∈ R
N , such that the xi do not lie in a hyperplane of dimension less than N . As

noted in the previous chapter optimality is equivalent to the requirement that with

unit norm

zi =
xi − y

d

and

Z =
n
∑

i=1

ziz
′
i (4.1)
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the zi do not lie on a hyperplane of dimension less than N , and there holds:

Z =
n

N
I. (4.2)

Our focus will be to choose for a given n > N , and z1, orthogonal matrices Q ∈ R
N×N

such that with

zi = Qi−1z1. (4.3)

the zi do not lie on a hyperplane of dimension less than N , and (4.2) i.e.

n−1
∑

i=0

Qiz1z
′
1Q

′i =
n

N
I. (4.4)

In doing so we observe that as before for any orthogonal matrix Q, (4.1) is unaltered

if zi are replaced ±Qzi. We also note that it suffices to consider an arbitrary z1, as

should Q satisfy (4.4) with a given z1 and if η = Pz1, with P orthogonal, then (4.4)

holds with z1 and Q respectively replaced by η and PQP ′.

4.3 A necessary condition

We first provide a necessary condition on orthogonal Q to ensure that for a

given non-zero z1, and n > N , the zi generated as in (4.3) do not lie on a hyperplane

of dimension less than N .

Lemma 4.1. Consider for n > N ≥ 2, any orthogonal Q ∈ R
N×N , and a unit
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v ∈ R
N . Suppose:

n−1
∑

i=0

Qivv′Q′i =
n

N
I, (4.5)

and {v,Qv,Q2v, · · · , Qn−1v} do not lie on a hyperplane of dimension less than N .

Then the eigenvalues of Q are simple, on the unit circle, none is at 1 and complex

eigenvalues appear in conjugate pairs.

Proof. Since Q ∈ R
N×N , is orthogonal, all eigenvalues are on the unit circle and

complex ones appear in conjugate pairs.

We next assert that Q cannot have an eigenvalue at 1. To establish a contradiction

suppose the contrary is true. Then for some p ∈ R
N ,

p′Q = p′.

Thus, for all i ∈ {0, 1, · · · , n− 1},

p′Qi
nv = p′v = constant .

Consequently {v,Qv,Q2v, · · · , Qn−1v} lie on an (N − 1)-dimensional hyperplane.

Finally we prove that the eigenvalues of Q are distinct. Suppose, to establish a

contradiction, an eigenvalue of Q has multiplicity greater than 1. Then for a unitary

matrix U ∈ CN×N and diagonal Λ ∈ C(N−2)×(N−2), and scalar, possibly complex,
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nonzero λ, there holds:

Q = U









Λ 0

0 λI2









UH .

Define

Uv =









v1

v2









, (4.6)

where v2 ∈ C2. Observe for all i ∈ {0, · · · , n− 1},

Qiv = U









Λiv1

λiv2









.

Thus as U is unitary, (4.5) holds iff the following holds:









∑n−1
i=0 Λiv1v

H
1 ΛHi

∑n−1
i=0 Λiv1v

H
2 λ∗i

∑n−1
i=0 λiv2v

H
1 ΛHi

(

∑n−1
i=0 |λ|2i

)

v2v
H
2









=
n

N
I.

This in particular implies that the matrix v2v
H
2 that has rank at most 1, is a scaled

identity. This leads to a contradiction, thus completing the proof.

The implication of this result is as follows. For even N = 2M the eigenvalues



www.manaraa.com

45

of Q must be

{e±jθi}Mi=1 (4.7)

where for all i 6= k

e±jθi 6= e±jθk , (4.8)

and for all i ∈ {1, · · · ,M},

ejθi /∈ {−1, 1}. (4.9)

On the other hand for odd N = 2M + 1, with θi as above the set of eigenvalues of Q

must be:

{e±jθi}Mi=1

⋃

{−1}. (4.10)

In the remaining two sections of this chapter, we provide necessary and sufficient

conditions on Q for the case of even and odd N .

4.4 The even dimensional case

Having established a necessary condition on Q, we now turn to characterizing

all orthogonal real Q, given a unit norm z1 that obey the required condition, when N
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is even. Specifically, we use the fact that every Q ∈ R
N×N admits the factorization:

Q = TΛTH , (4.11)

where T ∈ CN×N is unitary and Λ ∈ CN×N is diagonal with all elements on the unit

circle. The theorem below characterizes the relationship between T , Λ and z1.

Theorem 4.2. Suppose for integer M ≥ 1, n > N = 2M , and z1 ∈ R
N is a unit norm

vector. Consider an orthogonal Q ∈ R
N×N as in (4.11) where T ∈ CN×N is unitary

and Λ ∈ CN×N is diagonal with all elements on the unit circle. Then Q satisfies (4.4)

and the set of vectors {z1, Qz1, · · · , Qn−1z1} do not lie on an (N − 1)-dimensional iff

the following hold.

(a) Each element of THz1 has magnitude 1/
√
N .

(b) There exist real θ1, · · · , θM , such that the diagonal elements of Λ are e±jθi, are

distinct and appear in conjugate pairs.

(c) For all i ∈ {1, · · · ,M}, e±jθi 6= ±1.

(d) For all {i, j} ⊂ {1, · · · ,M}, including i = j, θi ± θj are integer multiples of

2π/n.

Proof. We first prove necessity.
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The necessity of (b) and (c) follows from Lemma 4.1. Define:

w =

























w1

w2

...

wN

























= THz1. (4.12)

Observe (4.4) is equivalent to:

n−1
∑

i=0

ΛiwwHΛHi =
n

N
I. (4.13)

The k-th diagonal element of the left hand side is n |wk|2. Hence (a) must hold.

The off diagonal elements on the left hand side of (4.13) are two types. First for

suitable {k, l} ⊂ {1, · · · , N}, k 6= l, and {r, s} ⊂ {1, · · · ,M}, r 6= s,

wkw
∗
l

n−1
∑

i=0

e±ji(θr±θs) = wkw
∗
l

1− e±jn(θr±θs)

1− e±j(θr±θs)
. (4.14)

Because of (b) and (c) the denominators are non-zero. Thus as (a) holds, for r 6= s,

n(θr ± θs) is a multiple of 2π, i.e. θr ± θs is a multiple of 2π/n.

The second type of off diagonal elements on the left hand side of (4.13) are: for

suitable {k, l} ⊂ {1, · · · , N}, k 6= l, and r ∈ {1, · · · ,M},

wkw
∗
l

n−1
∑

i=0

e±2jiθr = wkw
∗
l

1− e±j2nθr

1− e±2jθr
. (4.15)
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Because of (c) the denominators are again non-zero. Thus as (a) holds, 2nθr is a

multiple of 2π. Thus (d) is also necessary.

To prove sufficiency we first note that to show that (4.4) holds it suffices to

show that (4.13) holds. As all elements of Λ are on the unit circle and (a) holds,

clearly the diagonal elements of the left hand side of (4.13) are all n/N . Consider

next the off diagonal elements of the form in (4.14). Because of (b-d), these are clearly

zero, as are the off-diagonal elements represented by (4.15). Thus indeed (4.13) and

hence (4.4) hold.

It remains to show that {z1, Qz1, Q
2z1, · · · , Qn−1z1} do not inhabit an (N−1)-

dimensional hyperplane. To establish a contradiction suppose they do lie on an (N −

1)-dimensional hyperplane. Then for some ρ ∈ R
N , ρ 6= 0 and all i, k ⊂ {0, · · · , n−1},

ρ′Qiz1 = ρ′Qkz1. (4.16)

Consequently with pH = ρ′Tn 6= 0, for all i ∈ {0, · · · , n− 2}

pH
(

Λi − Λi+1
)

w = 0. (4.17)

Without sacrificing generality assume that

Λ = diag
{

ejθ1 , e−jθ1 , ejθ2 , e−jθ2 , · · · , ejθM , e−jθM
}

. (4.18)
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Define:

pH = [p∗1, · · · p∗N ].

As n > N = 2M , under (4.18) there holds:

[ 1 1 1 1 ··· 1 1
ejθ1 e−jθ1 ejθ2 e−jθ2 ··· ejθM e−jθM

...
...

...
...

...
...

...
ej(N−1)θ1 e−j(N−1)θ1 ej(N−1)θ2 e−j(N−1)θ2 ··· ej(N−1)θM e−j(N−1)θM

]



















p∗1w1(1−ejθ1)
p∗2w2(1−e−jθ1)
p∗3w3(1−ejθ2)
p∗4w4(1−e−jθ2)

...
p∗N−1wN−1(1−ejθM )
p∗NwN(1−e−jθM )



















= 0.

(4.19)

The N × N matrix on the left hand side of (4.19) is a Vandermonde matrix. Thus

because of (b), the matrix is nonsingular. Thus for (4.19) to hold, because of (c), for

all i ∈ {1, · · · , N}, piwi = 0. Because of (a), this must mean that p = 0, establishing

a contradiction.

The foregoing represents a complete characterization of Q when N = 2M , and

n > N . We now show that for every M ≥ 1, a Q conforming to this characterization

can be found. First suppose Λ is as in (4.18). Define:

Te =
1√
2









1 1

j −j









. (4.20)
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Then the N ×N matrix

T = diag {Te, Te, · · · , Te} (4.21)

obeys (a) if z1 = [1, · · · , 1]′/
√
N .

Indeed in this case with:

Qi =









cos(θi) sin(θi)

− sin(θi) cos(θi)









(4.22)

one obtains:

Q = diag {Q1, Q2, · · · , QM} . (4.23)

The θi chosen to be odd multiples of π/n will satisfy (d). For example one could

choose for k ∈ {1, · · · ,M}

θk =
(2k − 1)π

n
. (4.24)

Given that there are M of these with n > 2M , one has for all k ∈ {1, · · · ,M} that

0 < θk ≤
(2M − 1)π

n
< π, (4.25)

i.e. these satisfy (b-c) as well. In the case when M = 1, this solution conforms to the



www.manaraa.com

51

solution in the previous chapter.

4.5 The case of odd N

We now turn to the case where N = 2M + 1, M ≥ 1. We have the following

theorem.

Theorem 4.3. Suppose for integer M ≥ 1, n > N = 2M + 1, and z1 ∈ R
N is a

unit norm vector. Consider an orthogonal Q ∈ R
N×N as in (4.11) where T ∈ CN×N

is unitary and Λ ∈ CN×N is diagonal with all elements on the unit circle. Then Q

satisfies (4.4) and the set of vectors {z1, Qz1, · · · , Qn−1z1} do not lie on an (N − 1)-

dimensional iff the following hold.

(a) Each element of THz1 has magnitude 1/
√
N .

(b) There exist real θ1, · · · , θM , such that 2M of the 2M + 1 diagonal elements of

Λ are e±jθi, are distinct and appear in conjugate pairs. The remaining diagonal

element of Λ is -1.

(c) For all i ∈ {1, · · · ,M}, e±jθi 6= ±1.

(d) For all {i, j} ⊂ {1, · · · ,M}, including i = j, θi ± θj are integer multiples of

2π/n.

(e) For all i ∈ {1, · · · ,M}, (±θi − π) are integer multiples of 2π/n.

Proof. As before we first prove necessity. The necessity of (b) and (c) follows from

Lemma 4.1. Define w as in (4.12). Again (4.4) is equivalent to (4.13). Consequently,
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as in the proof of Theorem 4.2, (4.4) implies (a).

The off diagonal elements on the left hand side of (4.13) are now of three types. First

for suitable {k, l} ⊂ {1, · · · , N}, k 6= l, and {r, s} ⊂ {1, · · · ,M}, r 6= s, obey (4.14).

The second for suitable suitable {k, l} ⊂ {1, · · · , N}, k 6= l, and r ∈ {1, · · · ,M},

obey (4.15). Thus as in the proof of Theorem 4.2 (4.4) implies (d).

The third type of off diagonal element is for suitable suitable {k, l} ⊂ {1, · · · , N},

k 6= l, and r ∈ {1, · · · ,M}, obey:

wkw
∗
l

n−1
∑

i=0

eji(±θr−π) = wkw
∗
l

1− ejn(±θr−π)

1− ej(±θr−π)
. (4.26)

Again because of (c) the denominator is non-zero, and thus for this element to be

zero (e) must hold.

To prove sufficiency we first note that to show that (4.4) holds it suffices to show that

(4.13) holds. As in the proof of Theorem 4.2 (a-d) suffice to prove that the diagonal

elements are n/N and off diagonal elements exemplified by (4.14) and (4.15) are zero.

Because of (e) the remaing types of off diagonal elements, i.e. (4.26) are also zero.

It remains to show that {z1, Qz1, Q
2z1, · · · , Qn−1z1} do not inhabit an (N −

1)-dimensional hyperplane. To establish a contradiction suppose they do lie on an

(N − 1)-dimensional hyperplane. Then for some ρ ∈ R
N , ρ 6= 0 and all i, k ⊂

{0, · · · , n − 1}, (4.16) holds. Consequently with pH = ρ′Tn = [p∗1, · · · p∗N ] 6= 0, for all
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i ∈ {0, · · · , n− 2}, (4.17) holds. Now without sacrificing generality assume that

Λ = diag
{

ejθ1 , e−jθ1 , ejθ2 , e−jθ2 , · · · , ejθM , e−jθM ,−1
}

. (4.27)

As n > N = 2M + 1, under (4.27) with

V =





1 1 1 1 ··· 1 1 1
ejθ1 e−jθ1 ejθ2 e−jθ2 ··· ejθM e−jθM −1
...

...
...

...
...

...
...

ej(N−1)θ1 e−j(N−1)θ1 ej(N−1)θ2 e−j(N−1)θ2 ··· ej(N−1)θM e−j(N−1)θM (−1)(N−1)



 (4.28)

and

f =























p∗1w1(1−ejθ1)
p∗2w2(1−e−jθ1)
p∗3w3(1−ejθ2)
p∗4w4(1−e−jθ2)

...
p∗N−2wN−2(1−ejθM )
p∗N−1wN−1(1−e−jθM )

2p∗NwN























(4.29)

there holds:

V f = 0. (4.30)

The matrix V is a Vandermonde matrix. Thus because of (b,c), the matrix is non-

singular. Hence for (4.30) to hold, because of (c), for all i ∈ {1, · · · , N}, piwi = 0.

Because of (a), this must mean that that p = 0, establishing a contradiction.

The foregoing represents a complete characterization of Q when N = 2M , and

n > N . We now show that for every M ≥ 1, a Q conforming to this characterization
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can be found. First suppose Λ is as in (4.27). Then with Te as in (4.20), the N ×N

matrix

T = diag {Te, Te, · · · , Te, 1} (4.31)

obeys (a) if z1 = [1, · · · , 1]′/
√
N .

Indeed in this case under (4.22) one obtains:

Q = diag {Q1, Q2, · · · , QM ,−1} . (4.32)

One example of θi is to choose for k ∈ {1, · · · ,M}

θk =
2kπ

n
− π. (4.33)

Clearly these saitisfy (d) and (e). Given that there are M of these with n > 2M + 1,

one has for all k ∈ {1, · · · ,M} that

−π < θk ≤ −π +
2Mπ

n
< 0, (4.34)

i.e. these satisfy (b-c) as well. In the case when M = 1, this solution conforms to the

solution in the previous chapter.
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CHAPTER 5

SOURCE LOCALIZATION

In this chapter, we will formulate the optimal source localization problem,

provide a necessary and sufficient condition for the optimum solution and then we

show how the optimality criteria are met for n>2. Section 5.1 provides a brief in-

troduction. Section 5.2 provides preliminaries including a precise problem statement

and its motivation. Specifically it provides three different optimality criteria. Section

5.3 shows that all three criteria have an identical necessary and sufficient condition

for optimality. In section 5.4, we show how the conditions are met for the 2D source

localization case.

5.1 Introduction

This chapter concerns optimum source localization in two dimensions. We

assume that the source to be localized is uniformly distributed in a circle, without

loss of generality, centered at the origin. As the source may be hazardous, the sensors

localizing it must be placed outside a circle of a larger radius. We will similarly phrase

optimality in terms of the Expectation of the Fisher Information Matrix (FIM).

As only statistical information concerning the source location is available the

optimization here is phrased in terms of the expectation of a FIM. This contrasts

to the source monitoring setting where as the source location is assumed known,

the actual FIM rather than its expectation is optimized. Even though this brings
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additional technical complications, the ultimate solution for sensor placement in both

localization and monitoring has broad conceptual similarities.

5.2 Preliminaries

We assume that there are n sensors the i-th located at xi ∈ R2. We also assume

that the Gaussian random variables wi are mutually uncorrelated. Straightforward

calculations, as shown in section 2.1, reveal that to within a scaling that is independent

of y and xi, the FIM for estimating y from the data si, A and β, becomes:

n
∑

i=1

(xi − y) (xi − y)′

‖xi − y‖4 .

We assume that y is uniformly distributed on a circle of radius r1, centered at the

origin, i.e. its density obeys:

pY (y) =















1
πr21

‖y‖ ≤ r1

0 else

. (5.1)

Given that y is random, the matrix corresponding to the FIM is its expectation, i.e.

F = E

[

n
∑

i=1

(xi − y) (xi − y)′

‖xi − y‖4

]

. (5.2)

We assume as depicted in figure 5.1, that the xi lie outside a circle, centered on the

origin, of radius greater than r1. In other words we impose the requirement that for
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some r2, there holds:

‖xi‖ ≥ r2 > r1. (5.3)

Now, the diagonal elements of the inverse of the FIM provide the Cramer-Rao Lower

Figure 5.1: Depiction of the localization problem

Bound (CRLB) for the underlying estimation problem conditioned on y. Thus as

is typical in detection theory, optimality constitutes either the maximization of the

minimum eigenvalue or the determinant of the F , or for reasons laid out below, the

minimization of the trace of F−1. Accordingly we pose the three problems below.

Problem 1: For a given integer n ≥ 3 and y ∈ R2, find distinct, xi ∈ R2, i ∈

{1, · · ·n}, such that λmin(F ) is maximized subject to (5.3).

Problem 2: For a given integer n ≥ 3 and y ∈ R2, find distinct, xi ∈ R2, i ∈

{1, · · ·n}, such that det(F ) is maximized subject to (5.3).

Problem 3: For a given integer n ≥ 3 and y ∈ R2, find distinct, xi ∈ R2, i ∈

{1, · · ·n}, such that trace(F−1) is minimized subject to (5.3).
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Observe, the minimization of tr(F−1) is equivalent to the minimization of the total

mean-square error.

5.3 Equivalent Formulation

We will first show that the first inequality constraint in (5.3) is replaceable by an

equality constraint, in other words optimum placement can be achieved by placing

sensors on the circle centered at the origin and with radius r2.

The derivation of this fact is somewhat nontrivial. Towards this end consider a

summand in (5.2), i.e.:

H(x) = E

[

(x− y) (x− y)′

‖x− y‖4
]

. (5.4)

We first make an important observation about H(x).

Lemma 5.1. Consider H(x) as in (5.4), with x, y ∈ RN , N > 1, y uniformly

distributed with pdf as in (5.1) and with

‖x‖ ≥ r2 > r1. (5.5)

Then with Ω ∈ R
N×N an orthogonal matrix, there holds:

H(Ωx) = ΩH(x)Ω
′

.

Proof. Define Z = Ω
′

Y . Then because of (5.1) and the fact that Ω is orthogonal, we



www.manaraa.com

59

obtain:

pZ(z) =















1
πr21

‖z‖ ≤ r1

0 else

.

Then:

H(Ωx) = E

[

(Ωx− y) (Ωx− y)′

‖Ωx− y‖4
]

= ΩE

[

(x− z) (x− z)′

‖x− z‖4
]

Ω
′

= ΩE

[

(x− y) (x− y)′

‖x− y‖4
]

Ω
′

= ΩH(x)Ω
′

.

An important property of H(x) is proved below.

Lemma 5.2. Consider H(x) as in (5.4), with x, y ∈ R2, y uniformly distributed with

pdf as in (5.1) and under (5.5). Then H(x) is positive definite.

Proof. In view of Lemma 5.1 to prove positive definiteness it suffices to show that for

all R > r1, H([R, 0]′) is positive definite. Equivalently we need to show that for all

real α, and R > r1,

[

cosα sinα

]

H([R, 0]′)









cosα

sinα









> 0. (5.6)
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By definition this is equivalent to showing that the following is positive for all real α,

and R > r1,

1

πr21

∫ r1

0

∫ 2π

0

[(R− r cos θ) cosα + r sin θ sinα]2

[

(R− r cos θ)2 + r2 sin2 θ
]2 dθdr. (5.7)

Since the integrand in (5.7) is clearly nonnegative for all real α, θ and R > r and this

quantity is analytic in θ, r and R for R > r, it suffices to show that for every α it is

non-zero for at least one set of values of θ, r and R for R > r. This is clearly true for

θ = 0 when cosα 6= 0, and θ = π/2 when cosα = 0.

We next prove a pivotal lemma.

Lemma 5.3. Consider H(x) as in (5.4), with x, y ∈ R2, and y uniformly distributed

with pdf as in (5.1). Suppose

R1 ≥ R2 > r1. (5.8)

Then there holds:

H ([R1, 0]
′) ≤ H([R2, 0]

′) .

Proof. To prove the result it suffices to show that for every real α and r < R, the left
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hand side of (5.6) and hence the following is decreasing in R:

∫ 2π

0

[(R− r cos θ) cosα + r sin θ sinα]2

[

(R− r cos θ)2 + r2 sin2 θ
]2 dθ.

Through a simple scaling by r if need be, it thus suffices to prove that for every real

α and R > 1 the following is decreasing in R:

G1 =

∫ 2π

0

[(R− cos θ) cosα + sin θ sinα]2

[

(R− cos θ)2 + sin2 θ
]2 dθ.

Now observe that:

G1 =

∫ π

0

{

[(R− cos θ) cosα + sin θ sinα]2

[

(R− cos θ)2 + sin2 θ
]2

+
[(R− cos θ) cosα− sin θ sinα]2

[

(R− cos θ)2 + sin2 θ
]2

}

dθ

= 2

∫ π

0

(R− cos θ)2 cos2 α + sin2 θ sin2 α
[

(R− cos θ)2 + sin2 θ
]2 dθ

Now for every θ, and R > 1,

1
[

(R− cos θ)2 + sin2 θ
]2

is a decreasing function of R. Thus it suffices to show that for all R > 1,

∫ π

0

(R− cos θ)2
[

(R− cos θ)2 + sin2 θ
]2dθ
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is a decreasing function of R.

As shown in Lemma A.1 in the appendix this integral is:

π (2R2 − 1)

2 (R− 1)2 R2
.

Its derivative with respect to R, for R > 1 is negative iff

2R(R− 1)
[

2R2(R− 1)− (2R2 − 1)(2R− 1)
]

< 0

⇔ −2R3 + 2R− 1 < 0

⇐ −1 < 0.

This proves the result.

We need one last result to prove the main result of this section.

Lemma 5.4. Consider two symmetric matrices A and B, with equal dimensions,

that obey A ≥ B > 0. Then with λmin(·), representing the smallest eigenvalue of its

argument, there holds:

(A) λmin(A) ≥ λmin(B).

(B) det(A) ≥ det(B).

(C) trace(A−1) ≤ trace(B−1).

Proof. By assumption there is a symmetric matrix C ≥ 0, such that A = B + C.

To prove (A) we observe that for x the eigenvector corresponding to the smallest
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eigenvalue of A, there holds:

λmin(A)x
′x = x′Ax

≥ x′Bx

≥ λmin(B)x′x.

To prove (B) we note that for any symmetric positive semidefinite matrix

D, det(I + D) ≥ 1. As B is symmetric positive definite, there exists a unique

positive definite symmetric square root, B1/2 of B, such that
{

B1/2
}2

= B. Observe

D = B−1/2CB−1/2 is symmetric positive semidefinite. Then the result follows by

noting that

det(A) = det(B + C)

= det(B) det(I +D)

≥ det(B).

Finally (C) is a trivial consequence of the fact that A ≥ B > 0 implies B−1 ≥ A−1.

We can now state and prove the main result of this section that sets up a simplifying

reformulation.

Theorem 5.5. For any n and xi, y ∈ R2, consider (5.2) under (5.3) and with y
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having pdf as in (5.1). Then there exist zi ∈ R2, with ‖zi‖ = r2, such that:

E

[

n
∑

i=1

(xi − y) (xi − y)′

‖xi − y‖4

]

≤ E

[

n
∑

i=1

(zi − y) (zi − y)′

‖zi − y‖4

]

.

Proof. Consider a particular xi. There exists an orthogonal matrix Ω such that

xi = Ω









‖xi‖

0









.

Then because of Lemma 5.1, with H(·) defined as in (5.4), there holds:

H(xi) = ΩH ([‖xi‖, 0]′) Ω
′

.

Further, from Lemma 5.3:

H(xi) = ΩH ([‖xi‖, 0]′) Ω′

≤ ΩH ([r2, 0]
′) Ω′

= H ([r2, 0]
′Ω′) .

Thus

zi = Ω









‖r2‖

0








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has norm r2 and obeys:

E

[

(xi − y) (xi − y)′

‖xi − y‖4
]

≤ E

[

(zi − y) (zi − y)′

‖zi − y‖4
]

.

Thus corresponding to every ‖xi‖ ≥ r2, there is a ‖zi‖ = r2 for which the above

inequality holds. Hence the result follows.

Now define with ‖zi‖ = r2,

Z = E

[

n
∑

i=1

(zi − y) (zi − y)′

‖zi − y‖4

]

. (5.9)

Thus in view of Lemma 5.4, without loss of generality to consider problems 1

to 3 is equivalent to considering the three problems below.

Problem 1A: For a given integer n ≥ 3, find distinct, zi ∈ R2, i ∈ {1, · · ·n}, such

that ‖zi‖ = r2 and λmin(Z) is maximized.

Problem 2A: For a given integer n ≥ 3, find distinct, zi ∈ R2, i ∈ {1, · · ·n}, such

that ‖zi‖ = r2 and det(Z) is maximized.

Problem 3A: For a given integer n ≥ 3, find distinct, zi ∈ R2, i ∈ {1, · · ·n}, such

that ‖zi‖ = r2 and tr(Z−1) is minimized.

Observe that when the zi all have norm r2 then

trace(Z) = trace (H ([r2, 0])) = c. (5.10)

We next present a necessary and sufficient condition for the solutions of all three
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problems the proof of which is a trivial variation of a result in [11].

Theorem 5.6. Consider for an integer n ≥ N + 1 any N × N symmetric positive

definite matrix B, with

tr(B) = c. (5.11)

Then

λmin(B) ≤ cn

N
(5.12)

det(B) ≤
(cn

N

)N

, (5.13)

and

tr(B−1) ≥ N2

cn
. (5.14)

Further equality holds in these inequalities iff

B =
cn

N
I. (5.15)
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Thus the solution to both problems is characterized by ‖zi‖ = r2 that result in

Z =
cn

N
I. (5.16)

In the next section, we will explore the design of distinct non-coplanar zi to force

(5.16) with N = 2 and n > 2.

5.4 Solution to the source localization problem

In this section we describe how (5.16) can be met for n > 2. We first note

certain simple structural issues associated with (5.9). In particular note that for

any orthogonal matrix Q, (5.9) is unaltered if zi are replaced ±Qzi. Solutions thus

related will be designated henceforth as belonging to the same equivalence class.

When we talk of uniqueness of optimizing solutions, we mean uniqueness to within

such equivalences.

To fix ideas, assume that H([r2, 0]
′) has the singular value decomposition:

H([r2, 0]
′) = UΛU ′ (5.17)

where U is an orthogonal matrix, and

Λ =









λ1 0

0 λ2









(5.18)
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As H([r2, 0]
′) is positive definite, the λi are positive. The next lemma proves that

these eigenvalues are in fact distinct.

Lemma 5.7. Consider H(x) as in (5.4), with x, y ∈ R2, y uniformly distributed with

pdf as in (5.1) and under (5.5). Then the two eigenvalues of H(x) are distinct.

Proof. In view of Lemma 5.1 to prove that H(x) has distinct eigenvalues it suffices

to show that for all R > r1, H([R, 0]′) has distinct eigenvalues. To establish a contra-

diction suppose that both the eigenvalues of H([R, 0]′) are the same. As H([R, 0]′) is

positive definite this must mean that it is a scaled identity. This in turm implies that

for every given R > r1 the integral in (5.7) is constant regardless of α.

Now observe that this is equivalent to stating that for every R > r1 the integral

in (5.7) viewed as a function of α, is independent of α. Arguing as in the proof of

Lemma 5.3 this is equivalent to saying that for all R > r1, the following integeral is

independent of α:

∫ r1

0

∫ π

0

[

(R− r cos θ)2 cos2 α + r2 sin2 θ sin2 α
]

[

(R− r cos θ)2 + r2 sin2 θ
]2 dθdr.

Further to prove that this cannot be true, it suffices to show that for all R > 1, the

derivative with respect to α of the integral below has the same sign as sin 2α. This is

so as in that case the derivative of (5.7) must be nonzero for almost all values of α.

∫ π

0

[

(R− cos θ)2 cos2 α + sin2 θ sin2 α
]

[

(R− cos θ)2 + sin2 θ
]2 dθ.
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This derivative is simply:

sin 2α

∫ π

0

[

(R− cos θ)2 − sin2 θ
]

[

(R− cos θ)2 + sin2 θ
]2dθ.

Thus to prove the result all we need to show is that for R > 1,

∫ π

0

[

(R− cos θ)2 − sin2 θ
]

[

(R− cos θ)2 + sin2 θ
]2dθ > 0.

From Lemmas A.1 and A.3 this requires

(2R2 − 1)

2 (R− 1)2 R2
− 1

R4 − 1
> 0

⇔ 2R2 − 1

2R2
− 1

R2 + 1
> 0

⇐ (2R2 − 1)(R2 + 1)− 1 > 0

⇐ R2 + 1− 1 > 0,

which is clearly true.

The fact that the eigenvalues are distinct ensures that the problems we are

attempting to solve do not have trivial soultions, as otherwiseH(x) and Z are trivially

scaled identity matrices.

Observe also that there are two types of 2× 2 orthogonal matrices. The first known
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as Givens rotations take the form:

Q =









cos θ − sin θ

sin θ cos θ









. (5.19)

Most specifically, with such a Q, Qx is x rotated counter clockwise by θ. The second

type of orthogonal matrix has the form:

Q̄ =









cos θ sin θ

sin θ − cos θ









. (5.20)

Observe these two matrices are related to each other by:

Q = Q̄









1 0

0 −1









.

There is no loss of generality in assuming that U in (5.17) is as in (5.19). This is so

as for diagonal Λ

QΛQ′ = Q̄









1 0

0 −1









Λ









1 0

0 −1









Q̄′

= Q̄ΛQ̄′.

Thus we will assume that U is a Givens rotation. We also note an important fact

about Givens rotations exploited in the sequel: These matrices commute.

In view of the equivalences noted earlier, there is no loss of generality in assuming
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that

z1 = U ′[r2, 0]
′, (5.21)

an assumption that will hold henceforth. We next describe one class of potential

solutions for achieving (5.16). Namely with Q a matrix as in (5.19), select for i ∈

{2, · · · , n}

zi = Qi−1z1. (5.22)

Then (5.16) is equivalent to:

n
∑

i=1

H
(

Qi−1z1
)

=
n (λ1 + λ2)

2
I. (5.23)

We observe also that:

Qi =









cos iθ − sin iθ

sin iθ cos iθ









.

Then because of Lemma 5.1, (5.17) and (5.21), the left hand side of (5.22) is:

n
∑

i=1

H
(

Qi−1z1
)

=
n
∑

i=1

Qi−1U ′H ([r2, 0]
′)U

(

Qi−1
)′

=
n
∑

i=1

Qi−1Λ
(

Qi−1
)′
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We now assert that in (5.19)

θ =
π

n
(5.24)

suffices to achieve (5.22). Indeed observe that under this choice the (1, 1) element of

the left hand side of (5.23) is

Z(1, 1) = λ1

(

1 +
n−1
∑

i=1

cos2
πi

n

)

+ λ2

n−1
∑

i=1

sin2 πi

n
, (5.25)

the (2, 2) element is:

Z(2, 2) = λ2

(

1 +
n−1
∑

i=1

sin2 πi

n

)

+ λ1

n−1
∑

i=1

cos2
πi

n
, (5.26)

and the off diagonal elements are:

Z(1, 2) = (λ1 − λ2)
n−1
∑

i=1

cos
πi

n
sin

πi

n
. (5.27)

Now observe that (5.27) becomes:

Z(1, 2) = (λ1 − λ2)
n−1
∑

i=1

cos
πi

n
sin

πi

n

=
λ1 − λ2

2

n−1
∑

i=1

sin
2πi

n

= (λ1 − λ2) Im

[

n−1
∑

i=0

exp(j2πi/n)

]

= 0.
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Further,

Z(1, 1) = λ1 + λ1

n−1
∑

i=1

cos2
πi

n
+ λ2

n−1
∑

i=1

sin2 πi

n

= λ1 + (n− 1)λ2 + (λ1 − λ2)
n−1
∑

i=1

cos2
πi

n

= λ1 + (n− 1)λ2 +
λ1 − λ2

2

n−1
∑

i=1

(

1 + cos
2πi

n

)

= λ1 + (n− 1)λ2 +
(n− 1) (λ1 − λ2)

2

+
λ1 − λ2

2

n−1
∑

i=1

cos
2πi

n

= λ1 + (n− 1)λ2 +
(n− 1) (λ1 − λ2)

2
− λ1 − λ2

2

+
λ1 − λ2

2

n−1
∑

i=0

cos
2πi

n

= λ1 + (n− 1)λ2 +
(n− 2) (λ1 − λ2)

2
− λ1 − λ2

2

+
λ1 − λ2

2
Re

[

n−1
∑

i=0

ej
2πi
n

]

= λ1 + (n− 1)λ2 +
(n− 2) (λ1 − λ2)

2
− λ1 − λ2

2

=
n

2
(λ1 + λ2) .

Then by symmetry one also has

Z(2, 2) =
n

2
(λ1 + λ2) ,

and hence (5.22).

Thus a set of n vectors each rotated from their neighbor by π/n, and their equivalences



www.manaraa.com

74

suffice to achieve (5.16). It should be stressed that this choice of zi is by no means

unique for n > 3. We now argue that it is unique for n = 3, within of course the

equivalences noted above. Indeed for n = 3, to within equivalences we must choose

z1 as in (5.21), and for i ∈ {1, 2}, zi+1 = Qiz1, where

Qi =









cos θi − sin θi

sin θi cos θi









.

Then we must have:

λ1

(

1 + cos2 θ1 + cos2 θ2
)

+ λ2

(

sin2 θ1 + sin2 θ2
)

=
3 (λ1 + λ2)

2
, (5.28)

λ2

(

1 + cos2 θ1 + cos2 θ2
)

+ λ1

(

sin2 θ1 + sin2 θ2
)

=
3 (λ1 + λ2)

2
, (5.29)

and

(λ1 − λ2) (cos θ1 sin θ1 + cos θ2 sin θ2) = 0. (5.30)

Since the λi are distinct, (5.30) is equivalent to:

cos θ1 sin θ1 + cos θ2 sin θ2 = 0. (5.31)

Subtracting λ1 times (5.29) from λ2 times (5.28) one gets, using the distinct nature
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of the λi that:

sin2 θ1 + sin2 θ2 = 3/2. (5.32)

Similarly, subtracting λ1 times (5.28) from λ2 times (5.29) one gets, using the distinct

nature of the λi that:

1 + cos2 θ1 + cos2 θ2 = 3/2. (5.33)

It has been shown in [21] that to within equivalences the solution to this is unique,

i.e. θ2 = 2θ1 = 2π/3.
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CHAPTER 6

CONCLUSION

The problem of source localization has become increasingly important in re-

cent years. We are interested in estimating the location of a source using various

relative position information. This research considered source localization and source

monitoring using relative position information provided by Received Signal Strength

(RSS) values under the assumption of log-normal shadowing.

Two specific issues were investigated. The first was one of source monitoring.

In this, one must place sensors around a localized source in an optimum fashion sub-

ject to the constraint that sensors were at least a certain distance from the source.

The second was sensor placement for source localization. In this problem, we assumed

that the source was uniformly distributed in a circular region. The sensors must be

placed in the complement of a larger concentric circle, to optimally localize the source.

In the source monitoring problem, we considered the optimum placement of

sensors in two and three dimension scenarios. The problem statement became one

of investigating Fisher Information Matrix (FIM) evaluation functions. In the 2D

case, the determinant and minimum eigenvalue of FIM were computed while in the

3D case an additional evaluation function, the trace of the inverse FIM was also

computed. The underlying problem then became one of maximizing the determinant

or the minimum eigenvalue of FIM or minimizing the trace of the inverse FIM (3D

case). Optimality of sensor placement for source monitoring was achieved if and only
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if the Fisher Information Matrix became a scaled diagonal matrix. We have provided

means by which sensors can be placed to achieve this condition in 2, 3 and arbitrary

N dimensions.

In the source localization problem, we also considered optimum placement

of non-colinear sensors in two dimensions for maximizing the determinant and the

smallest eigenvalue of the expectation of the FIM associated with the localization

from RSS under log normal shadowing, or by minimizing the trace of the inverse of

the expectation of the FIM. Optimality, has been subject to the requirement that the

source was uniformly distributed inside a circle of radius r1, and that the sensors be

outside a larger radius concentric circle. We have shown that for optimality, it was

necessary and sufficient that the expectation of the FIM be a scaled identity matrix.

We have thus, provided a class of locations that achieve optimality.

Future work includes extending the localization problem to 3-dimensions. It

should be also interesting to consider different geometries, e.g, when the source is in

a rectangle or an oval, and the sensors must be placed on its perimeters.

Other forms of relative position information such as TDOA, TOA or angle of

arrival should also be considered.
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APPENDIX A

SELECTED LEMMAS

We evaluate here two integrals used in the text of the section.

Lemma A.1. For all R > 1 there holds:

∫ π

0

(R− cos (θ))2

[

(R− cos (θ))2 + sin2 (θ)
]2dθ =

π (2R2 − 1)

2 (R− 1)2R2
.

Proof. Define t = tan
(

θ
2

)

. Then θ = 2 tan−1 (t),

dθ =
2

1 + t2
dt,

and cos (θ) = 1−t2

1+t2
, where Thus:

∫ π

0

(R− cos (θ))2

(R2 − 2R cos (θ) + 1)2
dθ

=

∫ ∞

0

2

1 + t2

(

R−
(

1−t2

1+t2

))2

(

R2 − 2R
(

1−t2

1+t2

)

+ 1
)2dt

=

∫ ∞

0

2

1 + t2

(

R (1 + t2)− (1− t2)

R2 (1 + t2)− 2R (1− t2) + (1 + t2)

)2

dt
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=

∫ ∞

0

2

1 + t2

(

(R− 1) + t2 (R + 1)

(R− 1)2 + t2 (R + 1)2

)2

dt

= 2

∫ ∞

0

t4 (R + 1)2 + 2t2 (R2 − 1) + (R− 1)2

(1 + t2)
[

(R− 1)2 + t2 (R + 1)2
]2 dt

Let R+1
R−1

= V , then the integral becomes

2

(R− 1)2

∫ ∞

0

t4V 2 + 2t2V + 1

(1 + t2) [1 + t2V 2]2
dt (A.1)

Using partial fractions, this reduces to:

2

(R− 1)2

∫ ∞

0

[

V − 1

(V + 1) (V 2t2 + 1)2
+

1

(V + 1)2 (t2 + 1)
]

+
2V + 1

(V + 1)2 (V 2t2 + 1)

]

dt

Following two integrals are well known or easily derived:

∫

dt

1 + V 2t2
=

tan−1(V t)

V
+ C, (A.2)
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and

∫

dt

(1 + V 2t2)2
=

tan−1(V t)

2V
+

t

2 (1 + V 2t2)
+ C. (A.3)

Thus the integral becomes:

π

(R− 1)2

[

V − 1

2V (V + 1)
+

1

(V + 1)2
+

2V + 1

V (V + 1)2

]

=
π (V 2 + 6V + 1)

2 (R− 1)2 (V + 1)2V

=
π ((R + 1)2 + 6(R2 − 1) + (R− 1)2)

8 (R− 1)2 R2

=
π (8R2 − 4)

8 (R− 1)2 R2

=
π (2R2 − 1)

2 (R− 1)2 R2
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Lemma A.2.

d

dR

(

π (2R2 − 1)

2 (R− 1)2 R2

)

= −π (2R3 − 2R + 1)

(R− 1)3 R3

Proof.

d

dR

(

π (2R2 − 1)

2 (R− 1)2 R2

)

=
π

2

d

dR

(

2R2 − 1

(R− 1)2 R2

)

Using Product rule

d (UV )

dR
=

dU

dR
V + U

dV

dR

where U = 1
(R−1)2

and V = 2R2−1
R2 .

d

dR

(

π (2R2 − 1)

2 (R− 1)2 R2

)

=
π

2

(

2R2 − 1

R2

d

dR

(

1

(R− 1)2

)

+
1

(R− 1)2
d

dR

(

2R2 − 1

R2

))

Using the chain rule

dUn

dR
= nUn−1dU

dR

where U = R− 1 and n = −2.

=
π

2

(

1

(R− 1)2
d

dR

(

2R2 − 1

R2

)

− 2 (2R2 − 1)

(R− 1)3 R2

d

dR
(R− 1)

)
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=
π

2

(

1

(R− 1)2
d

dR

(

2R2 − 1

R2

)

− 2 (2R2 − 1)

(R− 1)3 R2

)

Using the product rule

=
π

2

(

(2R2 − 1) d
dR

(

1
R2

)

+ 1
R2

d
dR

(2R2 − 1)

(R− 1)2
− 2 (2R2 − 1)

(R− 1)3 R2

)

=
π

2





4
R
− 2(2R2−1)

R3

(R− 1)2
− 2 (2R2 − 1)

(R− 1)3 R2





Simplifying the above equation yields

π

2

d

dR

(

2R2 − 1

(R− 1)2R2

)

Lemma A.3. For all R > 1 there holds:

∫ π

0

sin2 θ
[

(R− cos (θ))2 + sin2 (θ)
]2dθ =

π

R4 − 1
.

Proof. Proceed as in the proof of Lemma A.1. With t and V as defined, using (A.2)

and (A.3) one obtains:

∫ π

0

sin2 θ

(R2 − 2R cos (θ) + 1)2
dθ
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=

∫ ∞

0

8t2

(1 + t2)
(

R2 − 2R
(

1−t2

1+t2

)

+ 1
)2dt

=
8

(R− 1)4

∫ ∞

0

t2

(1 + t2)
[

(R− 1)2 + t2 (R + 1)2
]2dt

=
8

(R− 1)4

∫ ∞

0

t2

(1 + t2) [1 + t2V 2]2
dt (A.4)

=
8

(R− 1)4

∫ ∞

0

[

1

(1− V 2) (V 2t2 + 1)2

− 1

(V 2 − 1)2 (t2 + 1)
+

V 2

(V 2 − 1)2 (V 2t2 + 1)

]

dt

=
4π

(R− 1)4

[

V − 1

(V 2 − 1)2
+

1

2V (1− V 2)

]

=
2π

(R− 1)4V (V 2 + 1)
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=
2π

(R− 1)4R+1
R−1

(

(

R+1
R−1

)2
+ 1
)

=
π

(R2 − 1)(R2 + 1)

proving the result.
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